A Value Estimation Approach to the Iri-Imai Method for Constrained Convex Optimization

نویسندگان

  • Szewan Lam
  • Duan Li
  • Shuzhong Zhang
چکیده

In this paper, we propose an extension of the so-called Iri-Imai method to solve constrained convex programming problems. The original Iri-Imai method is designed for linear programs and assumes that the optimal objective value of the optimization problem is known in advance. Zhang [18] extends the method for constrained convex optimization, but the optimum value is still assumed to be known in advance. In our new extension this last requirement on the optimal value is relaxed; instead, only a lower bound of the optimal value is needed. Our approach uses a multiplicative barrier function for the problem with a univariate parameter that represents an estimated optimum value of the original optimization problem. An optimal solution to the original problem can be traced down by minimizing the multiplicative barrier function. Due to the convexity of this barrier function, the optimal objective value as well as the optimal solution of the original problem, are sought iteratively by applying Newton’s method to the multiplicative barrier function. A new formulation of multiplicative barrier function is further developed to acquire computational tractability and efficiency. Numerical results are presented to show the efficiency of the new method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence Property of the Iri-Imai Algorithm for Some Smooth Convex Programming Problems

In this paper, the Iri-Imai algorithm for solving linear and convex quadratic programming is extended to solve some other smooth convex programming problems. The globally linear convergence rate of this extended algorithm is proved, under the condition that the objective and constraint functions satisfy a certain type of convexity (called the harmonic convexity in this paper). A characterizatio...

متن کامل

Estimating the Parameters in Photovoltaic Modules: A Constrained Optimization Approach

This paper presents a novel identification technique for estimation of unknown parameters in photovoltaic (PV) systems. A single diode model is considered for the PV system, which consists of five unknown parameters. Using information of standard test condition (STC), three unknown parameters are written as functions of the other two parameters in a reduced model. An objective function and ...

متن کامل

Constrained Nonlinear Optimal Control via a Hybrid BA-SD

The non-convex behavior presented by nonlinear systems limits the application of classical optimization techniques to solve optimal control problems for these kinds of systems. This paper proposes a hybrid algorithm, namely BA-SD, by combining Bee algorithm (BA) with steepest descent (SD) method for numerically solving nonlinear optimal control (NOC) problems. The proposed algorithm includes th...

متن کامل

Linear Time Varying MPC Based Path Planning of an Autonomous Vehicle via Convex Optimization

In this paper a new method is introduced for path planning of an autonomous vehicle. In this method, the environment is considered cluttered and with some uncertainty sources. Thus, the state of detected object should be estimated using an optimal filter. To do so, the state distribution is assumed Gaussian. Thus the state vector is estimated by a Kalman filter at each time step. The estimation...

متن کامل

On Conically Ordered Convex Programs

In this paper we study a special class of convex optimization problems called conically ordered convex programs (COCP), where the feasible region is given as the level set of a vector-valued nonlinear mapping, expressed as a nonnegative combination of convex functions. The nonnegativity of the vectors is defined using a pre-described conic ordering. The new model extends the ordinary convex pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003